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Part I

Physical models of the vocal folds
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Introduction

Physical model

• Mathematical representation of the physical principles of phonation.

• It allows us to understand underlying mechanisms and simulate its
behavior by computers (what happens if...) in normal and abnormal
configurations.

• Applications: methods and computer tools for clinical diagnosis,
voice and speech synthesis, man-machine interfaces, etc.

Collaborations
Laura L. Koenig, Haskins Labs and Long Island University (USA)
Xavier Pelorson, Gipsa Lab/CNRS

3 / 65



Some facts

• The vocal fold oscillation is induced by the airflow through the
glottis.

• It modulates the airflow, producing an acoustic wave which is
injected into the vocal tract (source-filter theory).

• The same aeroelastic phenomenon also produces sound at the syrinx
in songbirds, in blood arteries during sphygmomanometry, at the lips
when playing a brass musical instrument, at the nostrils when
blowing the nose, at the soft palate when snoring.

• Physical models: since Van den Berg (1957) experimental studies on
glottal aerodynamics.

• Low-dimensional models: they are simple and allow for a better
understanding of the oscillation dynamics, at the same time they
capture complex nonlinear phenomena.
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Structure

Three interconnected blocks:

1 Biomechanical structure of vocal fold tissues.

2 Aerodynamics of glottal flow.

3 Propagation of acoustical wave on the vocal tract.
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Tissue motion

A surface wave propagates through
the tissues in the direction of the
airflow (Titze, 1988).

From the wave equation

∂2ξ

∂t2
= c2 ∂

2ξ

∂z2

we obtain

a1(t) = 2L[ξ0 + ξ(t + τ)]

≈ 2L[ξ0 + τ ξ̇(t)]

a2(t) = 2L[ξ0 + ξ(t − τ)]

≈ 2L[ξ0 − τ ξ̇(t)]
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Biomechanics

All biomechanics is lumped at the midpoint

M ξ̈ + h(ξ, ξ̇) + Kξ = Pg

Pg is the mean glottal air pressure, and h(ξ, ξ̇) is related to the energy
dissipated in the tissues

h(ξ, ξ̇) = B ξ̇ (Titze, 1988)

or, even better

h(ξ, ξ̇) = B ξ̇ + Cξ2ξ̇ (Laje et al., 2001)

Cξ2ξ̇ represents the effect of vocal fold collision, nonlinear characteristics
of tissues, and any other nonlinear phenomena. It introduces a saturation
effect at large oscillation amplitudes.

7 / 65



Glottal aerodynamics

Bernoulli flow up to the glottal exit, therefore:

Ps = P2 + kt
ρ

2

u2
g

a22

Ps is the subglottal pressure and ug the air flow.
At the glottal exit, all flow energy is lost to turbulence

P2 = Pi

The mean glottal air pressure is

Pg =
1

T

∫ T/2

−T/2

P(z)dz = Pi +
Ps − Pi

kt

(
1− a2

a1

)
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Oscillation mechanism

• If τ is small enough and Pi = 0,

Pg ≈
2Psτ ξ̇

ξ0 + ξ

• Glottis opening: ξ̇ > 0 =⇒ a1 > a2 =⇒ Pg > 0
• Glottis closing: ξ̇ < 0 =⇒ a1 < a2 =⇒ Pg < 0

• For small ξ, Pg ≈ αPs ξ̇, and the equation of motion is

M ξ̈ − (αPs − B − Cξ2)ξ̇ + Kξ = 0

which has the form of the relaxation oscillator (Van der Pol
equation)

ξ̈ − µ(1− ξ2)ξ̇ + ξ = 0
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Phonation threshold pressure

Pth =
ktξ0Bω

2sin(ωτ)

(Lucero and Koenig, 2007)
and, if τ is very small,

Pth =
ktξ0B

2τ

(Titze, 1988).
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Oscillation hysteresis

Oscillation onset is a subcritical Hopf bifurcation (Lucero, 1999).
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Phonation onset-offset hysteresis

• Excised larynges (Baer, 1981; Berry et al., 1995) and physical
models (Titze et al., 1995; Ruty et al., 2007): the subglottal
pressure is lower at oscillation offset than at oscillation onset.

• In speech, intraoral pressure is lower at voice onset compared to
voice offset (Munhall et al., 1994), the airflow is lower (Lucero and
Koenig, 2005), the transglottal pressures is higher (Hirose and Niimi,
1987), and the glottal width is smaller (Hirose and Niimi, 1987).

• The vocal fold configuration at oscillation onset seems to be always
more restricted than the configuration at offset, or,

• it is easier to maintain voice after it has started.
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Size influence

• Scale factor β = 1 adult man, 0.72 adult woman, 0.64 5-year-old
child.

• Dimensions d = βdman.
• Mass M = β3Mman.
• The modulus of elasticity and damping coefficient of tissues are

constant.

• Phonation threshold pressure

Pth =
ktξ0Bω

2βsin(δ)
δ = ωτ

• Smaller larynges demand a larger phonation threshold pressure. The
vocal fold surface is smaller, and absorb less energy from the airflow.
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Threshold vs. size

(Lucero and Koenig,2005)
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Vocal tract

• When the oscillation frequency (F0) is well below the first formant
(F1), the vocal tract is an inertive load

Pi ≈ I u̇g I = ρl/A

l is the vocal tract length and A is its cross-sectional area.

• The threshold pressure is

Pth =
ktξ0Bω

2sin(ωτ)
− ktξ0LIv2ω cot(ωτ)

(Lucero et al., 2009)

• The vocal tract lowers the threshold pressure
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Threshold pressure

Circles: data from a mechanical
replica (Ruty et al., 2007)
Stars: Titze’s model (1988)
Triangles: Extended model
Full circles: F0
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Acoustical wave propagation

Pi (t) = P+
i (t) + P−

i (t)

= P+
i (t) + rP+

i (t − ν)

= α
√

Ps [x(t) + rx(t − ν)]

where

α =
2lρc

A

√
2

ρkt
(coupling coefficient)

(Arneodo and Mindlin, 2009)
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Chest-falsetto

F1 = 500 Hz
Frequency and amplitude
jumps when F0 = F1.
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Singing into a tube

Singing: increasing F0.
F1 = 55 Hz, F2 = 165 Hz.
Frequency jump when
F0 = F2

Note also the subharmonic
regimes
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Phonation threshold pressure

Circles: data from a
mechanical replica (Ruty et
al., 2008)
Stars: theoretical results
Curves: F1 and F2
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Tube of increasing length

Curve: F1

Frequency jump when
F0 ≈ F1.
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Source-vocal tract interaction

• Frequency jumps and other sound instabilities may occur when the
fundamental frequency of the oscillation crosses a the vocal tract
resonances.

• They also require a strong source-vocal tract coupling: large
subglottal pressure or small the vocal tract (epilarynx) area.
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Part II

Articulator kinematics

23 / 65



Introduction

Question
Given a set of movement records from a repeated task, how do we
determine the common pattern and variations relative to that pattern?

Collaborations

• Laura L. Koenig, Haskins Labs and Long Island University

• Anders Löfqvist, Haskins Labs

• Peter Howell, University College London

• Kevin G. Munhall, Queen’s University

• Vincent L. Gracco, McGill University
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Example: Lip movements

“Buy Bobby a puppy”, vertical
displacement of lower lip
(Lucero et al., 1997).
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Unnormalized averaging

“Buy Bobby a puppy”, vertical acceleration of lower lip.
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Linearly normalized averaging

“Buy Bobby a puppy”, vertical acceleration of lower lip.
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Nonlinearly normalized averaging

“Buy Bobby a puppy”, vertical acceleration of lower lip.
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Funcional Data Analysis

• Set of analytical (computationally intensive) tools to explore
patterns and variability in sets of data obtained from observations of
a repeated physical process (Ramsay and Silverman, 1997).

• Data is recorded discretely, however, FDA assumes that such data
may be described by smooth functions of time which may be
evaluated at any particular instant of time.

• The main advantage of this approach is that it takes account of the
underlying continuity of the physiological system generating the
data, and thus it may capture temporal relations in the data owing
to this continuity.

• First applied to speech analysis by Ramsay et al. in 1996.

• Matlab Toolbox and other tools:
http://ego.psych.mcgill.ca/misc/fda/
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Functional data

• N records, each record is a set of recorded data (tj , zj), j = 1, . . . ,M.

• Assume the existence of a smooth function x(t) so that
zj = x(tj) + εj .

• x(t) may be computed at arbitrary t using smoothing and
interpolation techniques.

• Tipically, each functional data x(t) is expressed in terms of a base
expansion

x(t) =
K∑

k=1

ckφk(t),

where φk(t) could be, e.g., B-splines, triangular functions,
exponentials, polynomials, trigonometric functions, etc.

• The smaller K , the smoother x(t).
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Time warping

• Functional data: curves xi (t), i = 1, . . . ,N.

• For each curve, a transformation of time (warping function) is
sought hi (t) such that the normalized curves x∗

i (t) = xi [hi (t)] are
aligned, according to some measure.

• hi (t) must be strictly increasing and smooth.

• An auxiliary function wi (t) (relative curvature of hi (t)) is defined by

d2hi (t)

dt2
= wi (t)

dhi (t)

dt

whose solution is

hi (t) = C0 + C1

∫ t

0

exp

[∫ u

0

wi (v)dv

]
du

• For any continous wi (t), the above produces hi (t) strictly increasing
and smooth.

• wi (t) is the relative curvature of hi (t).
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Measures of alignment

• The algorithm minimizes

Fλ(h) =
N∑
i=1

∫ T

0

{[x∗
i (t)− x̄∗(t)]}2dt + λ

∫ T

0

[wi (t)]2dt

where λ is the roughness penalty coefficient.

• The larger λ, the smoother hi (t). When λ is very large, wi (t) ≈ 0
and hi (t) ≈ t.

• Even better: instead of the first integral, use the smallest eigenvalue
of

A =

[ ∫ T

0
[x̄∗(t)]2dt

∫ T

0
x∗
i (t)x̄∗(t)dt∫ T

0
x∗
i (t)x̄∗(t)dt

∫ T

0
[x∗

i (t)]2dt

]
If x∗

i (t) and x̄∗(t) differ only by a scale factor (i.e., they have the
same shape), then A is singular and one eigenvalue is zero.
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Example: Multidimensional records

“Say api again”, recorded with magnetometer at Haskins (Lucero and
Löfqvist, 2002).
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Example: Multidimensional records

“Say api again”, aligned.
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Results

“Say ata again”. Mean
± StD for tongue tip
movements.
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Results

“Say ata again”. Mean
± StD for vertical tongue
tip and tongue body
movements.
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Variability indices

Ampl. var. = Mean{StD[x∗
i (t)]}

Phase var. = Mean{StD[hi (t)]}
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Variability indices

(Lucero and Löfqvist, 2005)
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Mathematical model
Clock which produces a certain pattern p(t) at each cycle, with
variations in amplitude and phase (or velocity)

xi (t) = p[t + φi (t)] + βi (t)

(Lucero, 2005). Letting θi (t) = t + φi (t), then the clock speed (speaking
rate) is dθi/dt = 1 + dφi/dt.
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Time warping, again

• We want to compute a function hi (t) such that
h−1
i = θi (t) = t + φi (t).

• Then
xi [hi (t)] = x∗

i (t) = p(t) + β∗
i (t)

and we remove the phase variability.

• p(t) = Mean x∗
i (t) (assuming Mean β∗

i (t) = 0)

• β∗
i (t) = p(t)− x∗

i (t).

• φi [hi (t)] = φ∗i (t) = t − hi (t) is the phase shift or time shift of each
point in pattern p(t).

• StD φ∗i (t) and StD β∗
i (t) measure the levels of phase and amplitude

variability, respectively.
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Variability indices
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Part III

Facial modeling and animation
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Introduction

Goal
To develop a data-driven facial animation system that could be used as a
computational tool in speech production and perception studies. The
system must be capable of producing computer-generated animations of
speech with an acceptable level of realism, and should allow for direct
manipulation of facial movement parameters.

Applications

• Understand speech motor control

• Produce realistic facial animation. We seek linguistic realism rather
than cosmetic realism.

• Stimulus generation for audiovisual speech research.

Collaboration
Kevin Munhall, Queen’s University
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Theoretical modeling

Based on a a multilayered deformable mesh (Terzopoulos and Waters,
1990)

44 / 65



Muscle forces

45 / 65



Mesh equations

For each mesh node i (512 nodes/layer):

mẍi + r
∑
j

(ẋi − ẋj) + +
∑
j

gij +
∑
e

qei + si + hi = Fi

where
gij : elastic force (biphasic),
qi : incompressibility of skin (volume preservation),
si : force to penalize penetration in the skull,
hi : tissue connection to the skull,
Fi : total muscle force.
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Muscle model

• Steady force: M = kf SE , where E is the muscle ativity

• Graded force development: τ 2M̈ + 2τṀ + M = M (Laboissière et
al., 1996).

• Force-length characteristic:
M∗ = M exp(−|((L/L0)2.3 − 1)/1.26|1.62) (Brown et al., 1996).

• Force -velocity and passive stiffness characteristics:
F = M∗(f1 + f2 + arctan(f3 + f4L̇) + (km∆L)+ (Laboissière et al.,
1996).
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Full model
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Animation

Subject producing /upa/, with a
bite block to immobilize de jaw.

(Lucero and Munhall, 1999)
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Good, however...

• Intramuscular EMG recording required by the model is an invasive
technique with a complex experimental setup.

• The collected signals are still not a good representation of the true
muscle activation patterns, due to interdigitation of different muscle
fibers, nonlinear transfer functions between EMG and generated
force, etc.

• Difficulty of producing a good representation of the facial muscle
structure and skin biomechanics that could be adapted to individual
speakers
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Empirical modeling

Given a set of facial movement data during speech, what can we infer
about the underlying physiological structure?

Assumptions

• The activation of individual muscles produces regional patterns of
deformation.

• Such patterns are stable during speech, and occur in small (finite)
number.

• The total facial motion is the linear combination of those patterns.
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Approaches

• Kuratate et al (1998), etc.: Principal Component Analysis (PCA) is
used to decompose a set of facial shapes into orthogonal
components and build a reduced basis of eigenfaces.

We want our the model to be expressed in terms of a few facial
markers, rather than principal components which have non-trivial
physical interpretation.

• Badin et al (2002), etc.: PCA is used to determine articulatory
parameters to control the shape of a 3D vocal tract and face model.
Some of the parameters (e.g., jaw height, lip protrusion, etc.) are
defined a priori, and their contributions are subtracted from the data
before computing the remaining components.

We want to rely entirely on the data for building the model, with as
few prior assumptions as possible.
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Data

• 3D position of 57 markers on a
subject’s face, recorded with a
Vicon equipment at a 120 Hz
sampling frequency, and
transformed to head
coordinates.

• The subject was producing 40
CID Everyday sentences.

• The subject adopted a
consistent rest (“neutral”)
position at the beginning of
each sentence.
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Data example
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Data matrix

A =



x1(t1) x2(t1) x3(t1) · · · xn(t1)
x1(t2) x2(t2) x3(t2) · · · xn(t2)

...
...

...
...

x1(tm) x2(tm) x3(tm) · · · xn(tm)
y1(t1) y2(t1) y3(t1) · · · yn(t1)
y1(t2) y2(t2) y3(t2) · · · yn(t2)

...
...

...
...

y1(tm) y2(tm) y3(tm) · · · yn(tm)
z1(t1) z2(t1) z3(t1) · · · zn(t1)
z1(t2) z2(t2) z3(t2) · · · zn(t2)

...
...

...
...

z1(tm) z2(tm) z3(tm) · · · zn(tm)


Which columns (markers) are the most independent?

55 / 65



QR factorization with column pivoting

• Let A be an m × n data matrix, with m ≥ n. Its QR factorization
produces

AP = QR

where P is an n × n column permutation matrix, Q is an m × n
orthogonal matrix, and R is an n × n upper triangular matrix with
positive diagonal elements (Golub and Loan, 1996).

• The first column of AP is the column of A that has the largest
2-norm.

• The second column of AP is the column of A that has the largest
orthogonal projection in relation to the first column.

• In general, the kth column of AP is the column of A with the largest
orthogonal projection to the first k − 1 columns.

• Diagonal elements of R (Rk,k , called “R values”): orthogonal
components of each column k relative to the first k − 1 columns, in
decreasing order for k = 1, . . . , n. They are close to the singular
values in the SVD decomposition.

• The first columns of AP are well conditioned (independent).
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The subset selection problem

• Given a data matrix A, and an observation vector b, find a predictor
vector x in the least squares sense which minimizes ‖Ax − b‖22.
However, instead of using the whole data matrix A to predict b, use
only a subset of its columns (the most non-redundant columns).
How to pick those columns?.

• Solution: compute AP = QR. Then select the first k columns of
AP.

• We may use the k most independent columns of A, (AP1) to predict
the other (redundant) columns (AP2), in the least squares sense. If

R =

[
R11 R12

0 R22

]
, P = [P1P2] ,

then the solution of R11X = R12 is a minimizer of

E = ‖AP1X − AP2‖2F
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R values

Elements in the main diagonal of R. Represent the size of the orthogonal
components of each column of AP.
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Most independent markers

• Data sets: 30 sentences,
different for each trial.

• First marker: #40 or #48,
center of the lower lip or just
below.

• Next two markers: #34 and
#38, lip corners.

• Fourth marker: #2, center of
the left eyebrow.

Trials
Order 1 2 3 4 8 · · ·

1 40 40 40 40 48
2 34 34 34 34 34
3 38 38 38 38 38
4 2 2 2 2 2
5 36 36 36 6 36
6 6 6 49 36 6 · · ·
7 20 49 20 20 20
8 49 20 6 49 39
9 11 11 11 11 49

10 52 54 52 52 13
11 54 47 54 54 54
12 47 23 47 56 52
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Independen kinematic regions

Kinematic regions:
least square fit of
remaining markers,
extended to the whole
face by cubic
interpolation.

Red and blue
subregions: motion in
the same and
opposite direction,
respectively, to the
main marker’s
motion.

60 / 65



Computer generation of facial animations

• Facial animations of arbitrary speech utterances may be produced by
driving the independent kinematic regions with collected signals.

• The position of other arbitrary facial points may be generated by
using, e.g., cubic interpolation

• Using only 9 regions, the animations look visually realistic, without
any noticeable distortion in the motion pattern. The error of the
reconstructed trajectories of facial markers is low, with mean value
around 1 mm.
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Animation example

(Lucero and Munhall, 2008)
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Part IV

Final remarks
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About models

Milk production at a dairy farm was low so the farmer
wrote to the local university, asking help from
academia. A multidisciplinary team of professors was
assembled, headed by a theoretical physicist, and two
weeks of intensive on-site investigation took place.
The scholars then returned to the university, notebooks
crammed with data, where the task of writing the
report was left to the team leader. Shortly thereafter
the farmer received the write-up, and opened it to read
on the first line:

“Consider a spherical cow in vacuum...”

(From Wikipedia)
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