Some Challenging Facts of Brazillan Portuguese Vowel Phonology

Eleonora C. Albano
Lafape-IEL-Unicamp
Dinafon-CNPq

The Problem

\square Object: Brazillan Portuguese (henceforth BP) mid V/s.
\square Challenge: unifying the account of multi-layered vowel shifts along the opening dimension.
\square Facts: mid V opening/c/osing processes.
\square Processes:
\square Unstressed mid V closing harmony;
\square Unstressed mid V closing (raising);
\square Stressed mid V opening (lowering).

\square Layers:

Phonetic details,
\square Variable (sociolinguistic) categorical allophony,

- Morphophonologjical processes;

Probabilistic phonotactic bjases.

Abins

\square To give an overview of unpublished work in Portuguese on the first layer (phonetic detail) of BP mid V opening/closing phenomena;
\square To take a closer look at its other 3 layers, relying on lexical frequency data;
\square To focus on ongoing research on the $4^{\text {th }}$ layer: probabilistic phonotactic biases;
\square To describe the facts as accurately as possible;
\square To point to dynamic models as a promise of explanation;
\square To attiract interest of this community in the phenomena described.

Beckground

\square The BP Vowel System:
\square Stress dependant inventory:
$\square 7$ V's under stress: i, e, E, a, O, o, u.
$\square 3 / 5 / 7 \mathrm{~V}$'s ($i, a, u / e, a, 0$) in unstressed position, depending on side of stress and dialect.
Stress assignment:
\square Finat;
\square Penultimate;
\square Antepenultimate.
\square Its origin:
\square Latin vowels reorganized after quantity loss;
\square Quality distinctions due to quantity partly preserved in mid V's: e, o, E, O;
\square E, O most common under stress;
Changes involving:
aopening (mostly in stressed position);
\square Closing (mostly in unstiressed position). 5 V's ($i, e, a, 0, u)$ under nasaltzation.

Layer 12 Phonetic Detail

\square CV co-articulation: (Oliveira 2000):

- No F1 effects;
agreement with Ifterature.
Roces 2006, 2010:
\square No Fl effects;
-No F2 effiects in midol V / s.
\square V-to-V co-articulation (Roces 2006, 2010):
MIId V's in pre-stressed position: F1 effects agreeing with stressed V ;
Mid V's in stressed position: F1 effects disagreeing with prestiressed V .
Research agenda: Why
such olisharmony?

Layer 2: Gategorical Allophony

\square Unstressed MFid V closing:
\square Pre-stressed mid V harmony, e.g., m[T]/nino, b[u]/nito (Bisol 1981);
\square Pre-stressed Mid V "raising", e.g. p[J]queno, f[uT]gão, c[u]meço (idem);
\square Stressed mid V opening: \square Acronyms and foreign words, e.g., CEP ['sE.pl],
 Inovetive pronunciation of low frequency words, e.g., c[[e]pa>c[][]pa,

Note the inverse correlations spanning over different ranges. Research Agenda: Why lemma frequency matters?

Layer 3: Noun Morphophonology

\square Gender/number suppletive stem V alternations: umlaut or ablaut?
\square Masculline sing. originated in umlaut, e.g., s[o]gro; \square Feminine sing./pl. etymologjically open, e.g., s[O]gra/s; \square Masculline pl. "immune" to umlaut, e. g., s[O]gros.
\square Synchronic ablaut supported by occasional plural "analoglies", e.g. b/O]/sos, a/m[O]ços, pesc[O]ços;
\square Feminine less innovative than plural, except as below.
In regressive noun formation from first conjugation verbs, unhlaut is productive, though sporadic:

Masculine close: ap[e]go, enr[e]/alo, tr[$[0]$ co, suf $[0]$]o;

\square Umlaut or metaphony" does not seem to be just a phonetic "fossil", but a lexical process. Can olynamics explain?

Layer 3: Adjective Morphophonology

\square Same suppletive ablaut pattern as in nouns, e.g., n[O]Vo, n[O]Vos, n[O]lva/s;
\square One highly productive suffix: 'oso', e.g., gost[[o]so, gost[O]/sos, gost[O]/sa/s ;
\square Non-etymological V : oso<ōsum, with long V ;
\square Umlaut traditionally attributed to feminine;
\square Obscure "analogical" origin of masculine plural;
\square Otherwise similar to nouns.
\square But, unlike regressive nouns, first conjugation reduced particijples are not subject to umlaut.

Either a close V is required in both masculine and feminine, e.g., qu[e]do/a, p[e]go/a;
Or an open V is required in both masculine and feminine, e.g., pl可 go / a, depending on dialect.
\square Ablaut or "apophony" also seems to be a lexical process, perhaps in "dynamic" competition with umlaut.

Layer 3: Verb Morphophonology

\square Two kinds of ablaut affect mid ${ }^{1 /}$'s in verb inflection:
\square A closing trend originated in umlaut and spread by "analogy":
\square In the unproductive conjugations in 'fr'/'er', e.g., s[D]nto<sentio, m[o]vo<moveo;
\square An opening trend which acts as a default (the "elsewhere case"):
\square In the productive conjugation in 'ar', e.g., I[弓]vo/a;;
\square Or in forms of the other conjugations not originated in umlaut, e.g., d/[G]ve, m[O]rre.
\square Abstract analyses treat most of these cases as underlying Harmony" ($=$ larris 1974, Mateus 1975), i.e., a truncated theme V leaving an opening/closing trace in the stem.
\square Is there any way to sort out and track down these trenols?
\square Phonotactics gives a hint... Preference of open stiressed syllables for open mid V's.

Assessing Phonotactic Blases

\square Data from public databases:
\square Lael (oral, ~45,000 words), available at: http://www2.lael. pucsp.br
\square Ceten (written, ~60,000 words), available at: http://www. linguateca.pt/
\square Coding:
\square Acronyms and foreign words filtered out,
Automatic orthography to phone conversion (Albano \& Moreira 1996).
\square Sample size selection:
\square Comparison among different-sized random samples;
\square Caveat: small samples are unstable.
\square Statistics:
Association: chij square (Pearson's and Likelihood Ratio);
Association Strength: Philand Cramer's V;
\square Cell significance: Sokell \& Rohli's (1995) test.
\square Factor contribution:
Log Linear Modeling.

Layer 4t Probabilistic Phonotactics

\square Segment frequency fact:
\square Open mid V's are low frequency (even under stress).
\square co-occurrence frequency facts:
\square Pre-stressed mid V's are weakly biased to co-occur with high and mid stressed V's (harmony);
\square Antepenultimate and penultimate stiressed mid V/s are biased to be open:

Stressed Mid V Frequency in Lael Types

Ceten Types: Prestressed x Stressed V's
 Cramer's $V=27$.

A Glimpse into Diachrony: Latinate \& Non-Latinate Words

Stressed mid V's are massively open in non-latinate vocabulary! (Source: online Houaiss dictionary)
Phi (= Cramer's V, for 2×2 tables) is very high (=.63).
Thus, the relationship between stress and opening must have been active in mid V's for centuries.

SPSASSD 2010

A Prestressed Mifd V Harmony

Blas?

\square In both corpora, prestressed V's:
If high or low, prefer disharmonic openings, i.e., H-L or LM \& L-H;

If mid, prefer harmonic, i.e., the same or lesser openings, M-M or M-H (as in above).
\square These bjases are significant, overall and cell by cell.
\square However, they are extremely weak: Cramer's Vะ.10!
\square Thus:
Harmony is weak lexically;
So, much room is left for it in allophony and allomorphy.
\square Can olynamics explain such a tayer spsassd 20interaction?

Open Stressed V Bjast Stress Position or Syllable rype?

\square Is there such a rule as "dactylic lowering" (Wetzels 1992)?
\square Maybe: in LAEL, the association between mid V opening and stress position is moderate in word types:
Cramer's V = .22;
\square However, it is nearly negligible in word tokens: $V=.10$;
\square On the other hand, in the same corpus, the association between mid V opening and syllable type is much stronger in word types: $V=.39$;
\square And gets strengthened in word tokens: $V=.48$.

Lael Types: V Opening \& Syllable Type

Lael Tokens: V Opening \& Syllable Type

NB: Overall proportions remain even if nasals are discounted.

Mid V Opening, Stress Position and Syllable Type in Oral Mid V's

\square As just seen, opening is associated to both stress position and syllable type.
\square Recall that the contrast is neutralized by nasalization.
\square For Lael oral mid V's, a log linear model fitted to an opening x stress position x syllable type contingency table yields significance for all 3 factors and their interactions.
Note the strength of the 3 interactions.

Best Log Linear Model: Lael Types			
	Degrs.of	Prt.Ass.	p Prt.Ass.
Stress	2	12922.89	0.00
Stress-SylType	2	1393.59	0.00
Opening-Stress	2	1148.86	0.00
Opening-Syltype	1	1128.16	0.00
Opening	1	146.56	0.00
Syl Type	1	112.21	0.00

Best Log Linear Model: Lael Tokens			
	Degrs.of	Prt.Ass.	Prt.Ass.
Stress	2	316599.1	0.00
Opening-Syltype	1	214359.0	0.00
Stress-SylType	2	85319.0	0.00
Opening-Stress	2	70479.4	0.00
Syl Type	1	24287.7	0.00
Opening	1	7386.9	0.00

The Default Opening for Mid

 Vowels\square Under penultimate or final stress, Mid V's tend to:
\square Open in open syllables;
\square Close in closed syllables.
\square The majority of stressed syllables is open.
\square Open is thus the default value for stressed mid V's.

\square Research agenda: Why prefer open in open syllables?

Conclusions

-All 4 layers of BP opening/closing phenomena seem to have a life of their own;
-Yet, they are similar in:
\square Popping up at dififerent scales;
\square Evolving by bursts and spurts;
\square Weakly constraining one another.
This looks like the behavior of dynamical systems;
\square So please, dynamics experts, help find order in this chaos!

References

B Bisol, L. 1981. Harmonização vocálica: uma regra variável. Unpublished doctoral dissertation. Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1981.
Harris, J. 1974. Evidence in Portuguese for the 'Elsewhere Condition' in Phonology, Linguistic Inquiry V, 61-80.
\square Mateus, M. H. 1975. Aspectos da Fonologia Portuguesa. Lisbon: Centro de Lingǘstica da Universidade de Lisboa.
\square Oliveira L. C. F. Estudo preliminar da coarticulação CV em português do Brasil: medidas de formantes. In: I/ Congresso Nacional da Abralin, 2000 Fev 25-27; Florianópolis. [CD-ROM]. Florianópolis: ABRALIN; 2000; 2:1385-1394.
\square Roces-Rodrigues, L. 2010. Relações gradientes V V em seqüências CVC no português brasileiro. Unpublished doctoral dissertation LAFAPE-DINAFON, IEL, Unicamp.
\square Sokal, R.R.; Rohlf, J.F. 1995. Biometry: The principles and practice of statistics in biological research. 3. ed. New York: W. H. Freeman and Company.

- Wetzels, W. L. 1992. Mid-vowel neutralization in Brazilian Portuguese. In B. Abaurre \& L. Wetzels. 1992. Cadernos de Estudos Linguísticos 23: Fonologia do Português. Campinas: University of Campinas: 19-55.

